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Questions of Interest

1. Given the lack of a publicly available framework,
how can we accurately model the banker’s offers?

2. What do we notice about past players’ gameplay?
3. How can we replicate empirical gameplay data and

describe it in terms of utility theory?
4. What methods are best to generate an optimal

player strategy?

Background Information

• A utility theory contains a binary preference rela-
tion on a set of X elements that represent choices
or actions.

• x 4 y ⇐⇒ "x is not preferred to y"
• Utility functions characterize the behavior of 4 via
assigning values to outcomes that respect the pref-
erence relation.

• Expected Utility Theory is a method that identi-
fies optimal decisions when presented with a risky
choice. It is based off of expected value of the
choice and individuals’ utility functions.

Sample Data

Player Education Stop Their Case Winnings
Bezos High 9 $750 $202,281.22

Round Expected Value Banker Offer
1 $168,368.30 $25,521.51
2 $169,089.40 $31,617.91
3 $212,348.20 $70,336.80
4 $290,718.80 $187,661.90
5 $337,625.00 $279,990.97
6 $205,150.00 $146,986.90
7 $156,437.50 $91,962.48
8 $175,250.00 $100,024.67
9 $250,375.00 $202,281.22

Banker Models

Initial Banker Models
Model MAE RMSE R2

Log Linear Regression 13977.03 22824.64 0.92
Random Forest 15372.02 23571.23 0.91

kNN (k=8) 16181.01 22654.55 0.92
Deep Neural Net 11368.58 16849.30 0.95

Neural Net Measures of Fit

• MAE: ranges from $11,000-$13,000
• MSE: ranges from $16,000-$19,000
•R2: ranging between 0.940-0.957
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Player Models

Logistic Regression
This model predicted the player’s decision with 92.7%
accuracy and a 50% cutoff. It was used to generate
decisions for the 1000 simulated players.

Utility Model
Utility for a deal, inspired by Khoszegi and Rabin’s
path dependent model, is the bank offer plus the
scaled difference between the expected value of the
round and the expected value that had been predicted
for that round:

u(offer) + 0.1 · (EV − PEV )

Utility for a no deal is the the average expected utility
over all possible states of the next round, plus a
scaled average predicted banker offer.
This resulted in an accuracy of up to 92.12% on the
empirical data and 86.74% on the simulation data.

Reinforcement Learning
This model beat simulated contestants 42.3% of the
time.
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Future Work and
Acknowledgements

• People don’t always act rationally; they may
choose plays with lower utilities, or trembles.

• Nesting our utility function in a model of stochastic
choice can incorporate this behavior into our
model and possibly improve the accuracy of our
predictions.

• This presentation summarizes the results of the
CC-REU NSF summer REU experience
(DMS-2050692) where these questions were
explored.
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