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3. How can we replicate empirical gameplay data and P Ap——
describe it in terms of utility theory?
4. What methods are best to generate an optimal
? .
player strategy Player Models II
Background Information Logistic Regression

Sample Round Banker Models Results

Initial Banker Models Frequency of Stop Rounds
$91,962.48 Model MAE RMSE R2 Empirical Data (47 Players)

Log Linear Regression 13977.03/22824.640.92
Random Forest 15372.02 23571.23 0.91
KNN (k=8) 16181.01 22654.55 0.92
Deep Neural Net [11368.58 16849.30 0.95
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Neural Net Measures of Fit
« MAE: ranges from $11,000-$13,000
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» ?%: ranging between 0.940-0.957
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Questions of Interest
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1. Given the lack of a publicly available framework,
how can we accurately model the banker’s offers?

2. What do we notice about past players’ gameplay?
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This model predicted the player’s decision with 92.7%
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accuracy and a 50% cutoff. It was used to generate Stop Round
« A utility theory contains a binary preference rela- decisions for the 1000 simulated players. Frequency of Stop Rounds
tion on a set of X elements that represent choices et Data (500 Games)
or actions. Utility Model
er <y <= "zis not preferred to 4" Utility for a deal, msplreq by Khoszegi and Rabin’s
Utility functions characterize the behavior of < via path dependent model, is the bank offer plus the o
nss ynitri values to outcomes that respect the\ of scaled difference between the expected value of the
erengce rglation P P round and the expected value that had been predicted ®
' for that round: £
- Expected Utility Theory is a method that identi- 5
~XPeCH y y 1t 106 u(offer) + 0.1- (EV — PEV) g,
fies optimal decisions when presented with a risky N | N
choice. It is based off of expected value of the Utility for a no deal is the the average expected utility
choice and individuals’ utility functions. over all possible states of the next round, plus a
scaled average predicted banker offer. .
This resulted in an accuracy of up to 92.12% on the 0.0- —
% o ' ' 1 2 3 4 5 6 7 8 9 10
Sample Data empirical data and 86.74% on the simulation data. o0 Rouac
Reinforcement Learning
This model beat simulated contestants 42.3% of the Fut Work d
: : — ' Y n
Player Education Stop Their Case Winnings time. uture VWork a
Bezos High 9  $750 $202,281.22 Acknowledgements
/ Deal or No Deal \
Round Expected Value Banker Offer P === Peonle don't al rationallv: th
oo sassdon | bz beztteond e * Feoplie aont always act rationally, tney ma
1 $168,368.30 $25,521.51 R (S P vay Honatly y may
5 $169 089.40 $31.617.91 N choose plays with lower utilities, or trembles.
3 $212.348.20 $70.336.80 ~ 7 - Nesting our utility function in a model of stochastic
4 $290.718.80 $187.661.90 —— choice can incorporate this behavior into our
5 $337.625.00 $279.990.97 model and possibly improve the accuracy of our
6  $205,150.00 $146,986.90 predictions.
7 $156,437.50 $91,962.48 * This presentation summarizes the results of the
8 $175,250.00 $100,024.67 CC-REU NSF summer REU experience
9 $250,375.00 $202,281.22 (DMS-2050692) where these questions were
explored.
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