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Follow along with me!

https://bit.ly/ashley_talks
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Motivation

3 of 30



Healthy Eating ➡ Healthy Living

� A healthy diet increases the likelihood of good overall health and 
decreases risk of preventable illness (World Health Organization, 2019).

� Maintaining a healthy diet requires consistent access to healthy food, 
which may be hindered by geography or income.

� Review studies found high prevalence of diabetes in food-insecure 
households (Gucciardi et al., 2014).
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Measuring Food Access 📏

� Count the number of healthy food retailers in a given radius (i.e., density)
� Compute the distance to the nearest healthy food retailer (i.e., proximity)

� Create an indicator of “low” food access that evaluates to 1 if zero 
healthy food retailers exist within a given distance (e.g., 0.5 miles or 1 
mile).
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Distance Computations

� The Haversine distance is a 
trigonometric function of latitude and 
longitude.

� It ignores physical obstacles, so it 
underestimates the true distance 
between two points and is considered 
error-prone.

� The Haversine distance in the image is 
impassable, as it crosses a pond.
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Figure: Haversine distance from
Reynolda Manor House
to a nearby Food Lion



Distance Computations

� The route-based distance works around 
obstacles.

� It is more accurate than the Haversine 
distance but is computationally 
expensive.
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Figure: Route distance from
Reynolda Manor House
to a nearby Food Lion



Research Questions

1. Can we use a function of distance to healthy food retailers to quantify 
food access in the Piedmont area of North Carolina, even if this function 
is subject to measurement error?

2. Can we estimate the relationship between low food access and 
diabetes prevalence?
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Methods
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Notation

�X is an error-free binary explanatory variable for low food access based 
on route-based distances

�X*	is an error-prone version of X	based on Haversine distances

�Z is an error-free covariate vector

�Y is a count of diabetes cases in the area of interest

�Q is an indicator of whether an observation has been queried
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We want to estimate the coefficients 𝛽	from the Poisson model of Y	|	X,	Z.



Two-Phase Design

� Having some correct route-based 
distances is better than none.

� Error-prone Haversine distances are 
available for all N neighborhoods, and 
we can use them to create our 
indicator of low food access X* that is 
subject to misclassification.

� In addition to X*, we query route-
based distances to create our 
indicator X for n neighborhoods, 
where n	<	N. 11 of 30

Figure: An example of two-phase design.



Modeling Options

� Gold Standard 
� Naïve Regression

� Complete Case Analysis

� Maximum Likelihood Estimation

👍

This method achieves optimal bias 
and variance.

👎

This method assumes we have all of 
the correct data available.
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Modeling Options

� Gold Standard 
� Naïve Regression
� Complete Case Analysis
� Maximum Likelihood Estimation

👍
The model is easy to fit and utilizes 
information from the error-prone 
data for all N neighborhoods.

👎
The model is biased by a function of 
the sensitivity and specificity (Shaw 
et al., 2020).
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Modeling Options

� Gold Standard 
� Naïve Regression

� Complete Case Analysis
� Maximum Likelihood Estimation

👍

The model is unbiased, as it uses the 
error-free measurements.

👎

The model does not take the 
unqueried data into account.
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Modeling Options

� Gold Standard 
� Naïve Regression

� Complete Case Analysis

� Maximum Likelihood Estimation

👍

The model utilizes information from 
both the queried and unqueried 
observations.
👎

This method is not (yet) implemented 
in existing software.
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More on the MLE
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More on the MLE
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Simulations
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Roadmap 🛣

We vary:

� Sample size N

� Queried sample size n
� Error mechanism

We compare:

� Gold Standard

� Complete Case
� Naïve Model

� MLE

We observe the effect of interest >𝛽# (truth = 0.155) and the relative efficiency.

19 of 30



N = 390 N = 2200

25% 50% 75% 90% 25% 50% 75% 90%

−2

−1

0

1

2

Query Percentage

β 1^

Method Naive Gold Standard MLE Complete Case
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Summary

� Across all four query settings, the MLE remains fairly unbiased.
� As we vary the size of the queried sample n, the MLE recovers up to 91% of 

the efficiency of the gold standard model and beats the complete case 
model in every case.

� As we introduce more error into the input data, the MLE remains fairly 
unbiased.

� As we vary the error, the MLE recovers between 70 and 83% of the 
efficiency of the gold standard model.
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Case Study
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Figure: Food access landscape of the Piedmont triad
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Figure: Summary of error rates in the Piedmont case study
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Figure: Diabetes prevalence estimates using four methods



Wrap-Up
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Future 
Directions

� Expand case study
� Improve query design

� Tipping point analysis
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Thank you!
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