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Motivation 🤔



Healthy Eating ➡ Healthy Living

• A healthy diet is full of fruits, vegetables, whole grains, and other high-
nutrient foods.


• A healthy diet increases the likelihood of good overall health and 
decreases risk of preventable illness (World Health Organization, 2019).


• Maintaining a healthy diet requires consistent access to healthy food, 
which may be hindered by physical or social barriers like geography or 
income.


• Review studies found high prevalence of diabetes in food-insecure 
households (Gucciardi et al., 2014).
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Measuring Food Access 📏

The density approach 
counts the number of 
healthy food retailers  
within a given radius.
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Measuring Food Access 📏

The proximity approach 
measures the distance* to 
the nearest healthy food 
retailer.


*more on that later
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Measuring Food Access 📏

We create an indicator of 
food access that flips on if 
at least one healthy food 
retailer sits within our 
radius.
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Measuring Food Access 📏
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• The Haversine distance is a trigonometric 
function of latitude and longitude.


• It ignores physical obstacles, so it 
underestimates the true distance between 
two points and is considered error-prone.


• The Haversine distance in the image is 
impassable, as it crosses a pond.

Distance Computations

Figure: Haversine distance from Reynolda Manor  
House to a nearby Food Lion
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• The route-based distance works around 
obstacles.


• It is more accurate than the Haversine distance, 
but it is computationally and financially 
expensive.


• These distances are computed with the ggmap 
package in R, which accesses the Google Maps 
API.


• In our case study, these distances are over a 
mile longer than the Haversine distances for 1 in 
5 neighborhoods!

Distance Computations

Figure: Route distance from Reynolda Manor  
House to a nearby Food Lion
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Guiding Questions

• Can we use a function of distance to healthy food retailers to 
quantify food access in the Piedmont Triad, even if this 
function is subject to misclassification?


• Can we estimate the relationship between food access and 
diabetes prevalence in the presence of misclassifications 
and missingness?
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Methods

🚨 it’s about to get math heavy 🚨



Variable Notation
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Variable Notation
• Xr is an error-free binary explanatory variable for food access  

based on route-based distances and a radius r (e.g., r = 1 mile)
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based on route-based distances and a radius r (e.g., r = 1 mile)

• X*r is an error-prone version of Xr based on Haversine distances

• Z is an error-free covariate vector

• Y is a count of diabetes cases in the area of interest

• Q is an indicator of whether a neighborhood has been queried
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Model Notation
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Model Notation
• Outcome Model



Yi ∣ Xri, Zi ∼ Poisson(λi)

λi = β0 + β1Xri + β2Zi
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• Error Model



Xri ∣ X*ri , Zi ∼ Bernoulli(πi)

πi = expit(η0 + η1X*ri + η2Zi)

Model Notation
• Outcome Model



Yi ∣ Xri, Zi ∼ Poisson(λi)

λi = β0 + β1Xri + β2Zi

exponentiate to get the 
prevalence ratio
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A Little More on Xr and X*r

• Let d be the route-based distance to the nearest healthy food retailer.


• Let h be the Haversine distance to the nearest healthy food retailer.


• Let r be the radius of interest.

Xr = 1 if d ≤ r 
0 if d > r{

X*r = 1 if h ≤ r
0 if h > r{
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• Having some correct route-based distances 
is better than none.


• Error-prone Haversine distances are available 
for all N neighborhoods, and we can use them 
to create our indicator of food access X*r that 
is subject to misclassification.


• In addition to X*r, we query route-based 
distances to create our indicator Xr for n 
neighborhoods, where n < N.


• We now have a missing data problem, as  
(N - n) neighborhoods only have X*r.

Two-Phase Design
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Outcome Model Options

• Gold Standard 

• Naive Analysis


• Complete Case Analysis


• Maximum Likelihood Estimation

👍


The model achieves optimal bias and 
variance.


👎


The model assumes we have all of 
the correct data available, but we do 
not.
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Outcome Model Options

• Gold Standard


• Naive Analysis 

• Complete Case Analysis


• Maximum Likelihood Estimation

👍


The model is easy to fit and utilizes 
information from the error-prone data 
for all of the neighborhoods.


👎


The model is biased by a function of 
the sensitivity and specificity (Shaw 
et al., 2020).
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Outcome Model Options

• Gold Standard


• Naive Analysis


• Complete Case Analysis 

• Maximum Likelihood Estimation

👍


The model is unbiased, as it uses the 
error-free measurements.


👎


The model does not take the 
unqueried data into account.
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Outcome Model Options

• Gold Standard


• Naive Analysis


• Complete Case Analysis


• Maximum Likelihood Estimation

👍


The model utilizes information from 
both the queried and unqueried 
observations.


👎


The method was not yet derived or 
implemented in existing software.
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Putting Together the MLE
Roadmap

We have four cases of data quality.


1. No misclassification or missingness (Xr = X*r always)


2. Misclassification without missingness (always have Xr and X*r)


3. Misclassification and total missingness (never have Xr but always X*r)


4. Misclassification and partial missingness (sometimes have Xr but always X*r)
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No misclassification or missingness
Case 1

Pβ,η(Y, X, Z) = Pβ(Y ∣ X, Z)Pη(X ∣ Z)P(Z)
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Misclassification without missingness
Case 2

Pβ,η(Y, X, Z, X*) = Pβ(Y ∣ X, Z)Pη(X ∣ X*, Z)P(X*, Z)
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Misclassification and total missingness
Case 3

Pβ,η(Y, X*, Z) =
1

∑
x=0

Pβ(Y ∣ X = x, Z)Pη(X = x ∣ Z)P(X*, Z)
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Misclassification and partial missingness
Case 4

ℒN(β, η) =
N

∏
i=1

{P(Xi, X*i , Yi, Zi)}Qi{P(X*i , Yi, Zi)}1−Qi
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Maximizing the Likelihood

• We do not have an analytical form for the MLE, so we use numerical 
methods.


• We use the optim() function in R with the BFGS routine  
(Bonnans et al., 2006).


• We find the minimum of the negative log likelihood, which is convex.


• We initialize with the complete case estimates (Little and Rubin, 2002).


• We invert the numerical estimate of the Hessian matrix as the standard 
error estimator.
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As N goes to infinity, the MLE ( ) is:̂θN

1. Consistent





2. Asymptotically Normal





3. Asymptotically Efficient


 achieves the Cramer-Rao lower bound

̂θN → θ

N ( ̂θN − θ) ∼ Normal(0, ℐ−1(θ))

ℐ−1(θ)

p
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POSSUM
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Simulations



Simulation Studies
Setup
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Setup

, where X ∣ X* ∼ Bernoulli(π) π = expit(η0 + η1X*)

     η0 = − log ( 1 − FPR
FPR ) η1 = − log ( 1 − TPR

TPR ) − η0

, where Y ∼ Poisson(λ) λ = exp(β0 + β1X)

Q ∼ Bernoulli(q)

Slide 26 of 48



Simulation Studies

We vary:


•Sample size N


•Queried proportion q


•Error mechanism (FPR, TPR)


•Prevalence ratio 


•Prevalence 

exp(β1)

exp(β0)

Roadmap

We compare:


• Gold standard


• Complete case


• Naive model


• MLE

We observe the effect of interest  and the relative efficiency.̂β1 Slide 27 of 48
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Takeaways
Simulation Studies

• Across all four query settings, the MLE remains fairly unbiased.


• As we vary the size of the queried sample, the MLE recovers up to 91% of the 
efficiency of the gold standard model and beats the complete case model in 
every case.


• As we introduce more error into the input data, the MLE remains fairly 
unbiased.


• As we vary the error, the MLE recovers between 70 and 83% of the efficiency 
of the gold standard model.
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Case Study: 
Diabetes in the Piedmont Triad



N = 387 Census Tracts
The Piedmont Triad
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N = 387 Census Tracts
The Piedmont Triad

You are here!
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Our “Neighborhoods”
What We Have

• Population center of the neighborhood


• Haversine distance from the nearest healthy food retailer to the center


• Route-based distance from the nearest healthy food retailer to the center


• Population size of the tract


• Count of diabetes cases in the tract
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Where They Came From

• Neighborhood population centers (N = 387) are from the Census Bureau 
(census tracts, 2010 release).


• Healthy food retailers (M = 701) are from the US Department of Agriculture 
(historical SNAP retailer locator dataset, 2022 release).


• Diabetes prevalences are from the Centers for Disease Control and 
Prevention (PLACES dataset, 2022 release).


• The data were adapted from Lotspeich et al., 2023+.
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What We Did

• Discretized both distance measurements to create Xr and X*r 

• Used radii of 0.5, 1, 5, and 10 miles


• Chose 25% of the tracts randomly to throw out Xr (i.e., let q = 0.75)
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• Statewide prevalence in 2021 
was 12.4% (American Diabetes 
Association)


• Most tracts have 8-12% 
prevalence


• Prevalence varies across the 
Triad


• Lower prevalences coincide with 
smaller, urban tracts

Diabetes Landscape

NA
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Diabetes Landscape
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• As radius increases, more tracts 
flip from blue to gold or black


• 22% of tracts have over a mile 
difference between their 
distance measures to the nearest 
retailer

Food Access Landscape

No Access

Error-Prone Access

True Access
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Error Rates
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Error Rates



The Model

log{Eβ(Diabetes Cases ∣ Access)} = β0 + β1Access + log(Population)
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The Model

log{Eβ(Diabetes Cases ∣ Access)} = β0 + β1Access + log(Population)

log(outcome prevalence)
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The Model

log{Eβ(Diabetes Cases ∣ Access)} = β0 + β1Access + log(Population)

log(prevalence ratio of exposure)
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The Model

log{Eβ(Diabetes Cases ∣ Access)} = β0 + β1Access + log(Population)
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The Model

log{Eβ(Diabetes Cases ∣ Access)} = β0 + β1Access + log(Population)

offset
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The Model

log{Eβ(Diabetes Cases ∣ Access)} = β0 + β1Access + log(Population)

Slide 42 of 48



Model Results
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• In the worst case, we need a 
confounder-outcome effect of 
9.5% to tip the prevalence ratio 
to the null.


• In the best case, we need a 
confounder-outcome effect of 
54.9% to tip the prevalence 
ratio.

What if we missed a confounder?
Hypothetical β2
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Wrap Up 🎬



• Can we use a function of distance to healthy food retailers to 
quantify food access in the Piedmont Triad, even if this 
function is subject to misclassification?


• Can we estimate the relationship between food access and 
diabetes prevalence in the presence of misclassifications 
and missingness?

Guiding Questions
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Strengths and Limitations
Uses all available data


Only two parametric 
assumptions


Lower bias than naive 
analysis


Recovers efficiency lost by 
the complete case analysis

😢Finicky numerical behavior, 
especially in the standard 
error estimators


😢Poisson assumptions in the 
case study
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Recommendations
• Use the gold standard in a setting where there is no missingness or 

misclassification.


• Use the MLE if you have high error rates and missingness, as it avoids the 
bias of the naive analysis and recovers more efficiency than the complete 
case analysis.


• If you have very little missingness, you can get away with the complete 
case analysis.
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Future Directions

• Incorporate a spatial model to explore relationships among 
adjacent tracts


• Vary the outcome model of interest


• Extend past the binary exposure case


• Improve the query design
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