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Motivation @



Healthy Eating &d Healthy Living

* A healthy diet is full of fruits, vegetables, whole grains, and other high-
nutrient foods.

* A healthy diet increases the likelihood of good overall health and
decreases risk of preventable illness (World Health Organization, 2019).

* Maintaining a healthy diet requires consistent access to healthy food,
which may be hindered by physical or social barriers like geography or
Income.

* Review studies found high prevalence of diabetes in food-insecure
households (Gucciardi et al., 2014).
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Measuring Food Access

The density approach
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healthy food retalilers
within a given radius.
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Measuring Food Access
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retailer sits within our
radius.
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Measuring Food Access
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Distance Computations

 The Haversine distance is a trigonometric
function of latitude and longitude.

* |t ignores physical obstacles, so it
underestimates the true distance between

two points and is considered error-prone.

* The Haversine distance in the image Is
iImpassable, as it crosses a pond.

Wake Fore
Universit)

()

Reynolda House Museum ¢}
of American Art ¥

Figure: Haversine distance from Reynolda Manor
House to a nearby Food Lion

Slide 7 of 48



Distance Computations

* The route-based distance works around
obstacles.

* |t s more accurate than the Haversine distance,
but it Is computationally and financially
expensive.

* These distances are computed with the ggmap

package in R, which accesses the Google Maps
API.

* |n our case study, these distances are over a
mile longer than the Haversine distances for 1 in
5 neighborhoods!

Wake Fore
University

Figure: Route distance from Reynolda Manor
House to a nearby Food Lion
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Guiding Questions

* Can we use a function of distance to healthy food retailers to
quantify food access in the Piedmont Triad, even if this
function is subject to misclassification?

 Can we estimate the relationship between food access and

diabetes prevalence in the presence of misclassifications
and missingness?
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Methods

it's about to get math heavy



Variable Notation
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Variable Notation

» X Is an error-free binary explanatory variable for food access
based on route-based distances and a radius r (e.g., r = 1 mile)

e XIS an error-prone version of X, based on Haversine distances
o ZIs an error-free covariate vector

* Y Is a count of diabetes cases in the area of interest

* QIs an indicator of whether a neighborhood has been queried

* O is an offset, the population of the area
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Model Notation
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Model Notation

e Qutcome Model

Y1|Xr

12

A= Po+ P X, + DL

\ ’ exponentiate to get the
 Error Model prevalence ratio

X, | X*,Z; ~ Bernoulli(r;)

Z. ~ Poisson(4,)

7; = expit(ny + m X + 1,2
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A Little More on X, and X’

* |et d be the route-based distance to the nearest healthy food retailer.
* Let h be the Haversine distance to the nearest healthy food retaller.

e [etr be the radius of interest.

X - { 1ifd<r “Access”
"= L 0ifd>r “No Access”

X", — { 1ifh <r “Error-Prone Access”
"~ LO0ifh>r “No Access”
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Two-Phase Design

 Having some correct route-based distances
IS better than none.

* Error-prone Haversine distances are available
for all N neighborhoods, and we can use them
to create our indicator of food access X' that
IS subject to misclassification.

* |n addition to X*;, we query route-based
distances to create our indicator X, for n
neighborhoods, where n < N.

* \WWe now have a missing data problem, as
(N - n) neighborhoods only have X.

Only » of Nneighborhoods

have complete data.
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Outcome Model Options

-
-

 Gold Standard The model achieves optimal bias and

variance.
 Naive Analysis

[S_—

_\}Eﬁ
» Complete Case Analysis

| - | | The model assumes we have all of
* Maximum Likelihood Estimation the correct data available, but we do
Not.
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Outcome Model Options

-
)\r-:/

* (Gold Standard The model is easy to fit and utilizes
information from the error-prone data

* Naive Analysis for all of the neighborhoods.

» Complete Case Analysis N=

* Maximum Likelihood Estimation The model is biased by a function of
the sensitivity and specificity (Shaw
et al., 2020).

Slide 15 of 48



Outcome Model Options

-
T

e Gold Standard The model is unbiased, as it uses the

| | error-free measurements.
 Naive Analysis

[ S—

_vtg
« Complete Case Analysis
| - - The model does not take the
 Maximum Likelihood Estimation unqueried data into account.
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Outcome Model Options

-
é\r—:

e Gold Standard The model utilizes information from
| | both the queried and unqueried
* Naive Analysis observations.

» Complete Case Analysis

“Im

Maximum Likelihood Estimation The method was not yet derived or
Implemented In existing software.
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Roadmap
Putting Together the MLE

We have four cases of data quality.
1. No misclassification or missingness (Xr = X'r always)
Misclassification without missingness (always have X, and X%

Misclassification and total missingness (never have X, but always X%

AR

. Misclassification and partial missingness (sometimes have X, but always X%)
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Case 1

No misclassification or missingness

Py, (Y.X,Z) = PAY | X,Z)P,(X | Z)P(Z)
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Case 1

No misclassification or missingness

Pﬁ,,,](Y, X,7Z) = Pﬁ(Y | X, Z)Pn(X | Z)P(Z)
outcome model
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Case 1
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Case 1

No misclassification or missingness

P; (Y, X,Z) = PyY | X,2)P (X | Z)P(Z)
drops out
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Case 2

Misclassification without missingness

Py, (Y. X,Z,X¥) = PAY | X, Z)P,(X | X*, Z)P(X*,Z)
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Case 2

Misclassification without missingness

Py, (Y. X,Z,X¥) = PAY | X, Z)P,(X | X*, Z)P(X*,2)

drops out
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Case 3

Misclassification and total missingness

1
Py, (Y, X*,Z) = Z PAY | X = x,Z)P (X = x | Z)P(X*,2)
x=0
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Case 3

Misclassification and total missingness

1
Py, (Y, X*,Z) = Z PAY | X = x,2)P (X = x | Z)P(X*,2)
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Case 3

Misclassification and total missingness

1
Py, (Y, X*,Z) = Z PAY | X = x,Z)P (X = x | Z)P(X*,2)
x=0

T
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Case 4

Misclassification and partial missingness

N
Ly = [T PG X5 Y, 21 AP Y, )0
=1
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Case 4

Misclassification and partial missingness

N
ZNB ) = H (P(X, X, Y, Z)} O P(X*, Y, Z) } ~%
=1

from case 2
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Case 4

Misclassification and partial missingness

N
Wb ) = H (P(X, X, Y, Z) V(PR Y, Z) )~
=1

from case 3
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Case 4

Misclassification and partial missingness

N
Ly = [T PG X5 Y, 21 AP Y, )0
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Case 4

Misclassification and partial missingness

query Indicators

N
Ly = [T 1P X5 Y, 210 PO, ¥, 7)) 10
=1
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Case 4

Misclassification and partial missingness

product over all (independent) neighborhoods

N
g = [ (P X2, Y, 2)) 2 P(XE, Y, 2)) 0
=1
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Case 4

Misclassification and partial missingness

N
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Maximizing the Likelihood

 We do not have an analytical form for the MLE, so we use numerical
methods.

* We use the optim() function in R with the BFGS routine
(Bonnans et al., 20006).

* We find the minimum of the negative log likelihood, which is convex.
* We initialize with the complete case estimates (Little and Rubin, 2002).

e \We Invert the numerical estimate of the Hessian matrix as the standard
error estimator.
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As N goes to infinity, the MLE (9,) is:

1. Consistent

A\

0, — 0
2. Asymptotically Normal

VN (8y=0) ~ Normal(0,.7'(6)

3. Asymptotically Efficient

F~1(0) achieves the Cramer-Rao lower bound
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Library(possum)
Library(dplyr)
set.seed(1031)

beta <- c(-2.2, 0.15)
eta <- c¢(-2.2, 4.4)
xstar = rbinom(n = 500, size = 1, prob = 0.5)

rbinom(n = 500, size = 1,

prob = 1 / (1 + exp(-(Ceta[l] + eta[Z2] * xstar))))

lambda = exp(beta[1] + beta[2] * x) > mle_output
y = rpois(h = 500, lambda = lambda) $coefficients
q = rbinom(n = 500, size = 1, prob = 0.75) Est Y =
df <- data.frame(xstar, x, y, q) (Intercept) -2.07087196 0.1595924
df <- df |> mutate(x = ifelse(q == 1, x, NA)) X 0.01085821 0.2378044

$convergence

mle_output <- mlePossum(error_formula = x ~ xstar,
- _ [1] ©
analysis_formula = y ~ X,
data = df)
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Simulations




Setup

Simulation Studies
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Setup

Simulation Studies
X* ~ Bernoulli(0.496)

X | X* ~ Bernoulli(z), where & = expit(y, + 17;X*)

| 1 — FPR | 1 — TPR
= — 10 = — 10 —_

Y ~ Poisson(4), where 4 = exp(f3, + £, X)

(O ~ Bernoulli(g)
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Roadmap

Simulation Studies

We vary: We compare:
«Sample size N * Gold standard
*Queried proportion g  Complete case
‘Error mechanism (FPR, TPR)  Naive model
-Prevalence ratio exp(/,) * MLE

-Prevalence exp(ﬁo)

We observe the effect of interest ,BAI and the relative efficiency.
Slide 27 of 48



Method . Naive E Gold Standard E MLE . Complete Case

N = 390 N = 2200
s
. l; ; %
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25%  50%  75% = 90% 25%  50%  75% = 90%

Query Percentage
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Takeaways

Simulation Studies

* Across all four query settings, the MLE remains fairly unbiased.

* As we vary the size of the queried sample, the MLE recovers up to 91% of the

efficiency of the gold standard model and beats the complete case model In
every case.

* As we introduce more error into the input data, the MLE remains fairly
unbiased.

* As we vary the error, the MLE recovers between 70 and 83% of the efficiency
of the gold standard model.
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Case Study:
Diabetes Iin the Piedmont Triad



The Piedmont Triad
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Our “Neighborhoods”

What We Have

 Population center of the neighborhood

 Haversine distance from the nearest healthy food retailer to the center
 Route-based distance from the nearest healthy food retailer to the center
 Population size of the tract

e Count of diabetes cases in the tract
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Our “Neighborhoods”

Where They Came From

* Neighborhood population centers (N = 387) are from the Census Bureau
(census tracts, 2010 release).

 Healthy food retailers (M = 701) are from the US Department of Agriculture
(historical SNAP retailer locator dataset, 2022 release).

* Diabetes prevalences are from the Centers for Disease Control and
Prevention (PLACES dataset, 2022 release).

 The data were adapted from Lotspeich et al., 2023+.
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Our “Neighborhoods”

What We Did

 Discretized both distance measurements to create X, and X*;
e Usedradiiof 0.5, 1, 5, and 10 miles

 Chose 25% of the tracts randomly to throw out X; (i.e., let g = 0.75)
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Diabetes Landscape

e Statewide prevalence in 2021
was 12.4% (American Diabetes
Association)

e Most tracts have 8-12%
prevalence

e Prevalence varies across the
Triad

* | ower prevalences coincide with
smaller, urban tracts
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Diabetes Landscape
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Food Access Landscape 0.5 Mile Radius 1 Mile Radius

 As radius increases, more tracts
flip from blue to gold or black

| Ne
o 22% of tracts have over a mile
difference between their \gﬂ

distance measures to the nearest
retaller

5 Mile Radius 10 Mile Radius

No Access

Error-Prone Access

- True Access
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Error Rates

0.5 Mile Radius
Straight-Line

No Access Access

No Access

Access

Route-Based
Route-Based

- No Access - Error-Prone Access

No Access

Access

1 Mile Radius
Straight-Line

No Access

Access
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Error Rates

5 Mile Radius
Straight-Line

No Access Access

No Access

Access

Route-Based
Route-Based

- No Access - Error-Prone Access

10 Mile Radius
Straight-Line

No Access

No Access

Access

- True Access
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The Model

log{Es(Diabetes Cases | Access)} = f, + fAccess + log(Population)
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The Model

log{Es(Diabetes Cases | Access)} = f, + fAccess + log(Population)

l

log(outcome prevalence)
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The Model

log{Es(Diabetes Cases | Access)} = f, + fAccess + log(Population)
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The Model

log{Es(Diabetes Cases | Access)} = f, + pjAccess + log(Population)

l

log(prevalence ratio of exposure)
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The Model

log{Es(Diabetes Cases | Access)} = f, + fAccess + log(Population)
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The Model

log{Es(Diabetes Cases | Access)} = f, + fAccess + log(Population)

l

offset
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The Model

log{Es(Diabetes Cases | Access)} = f, + fAccess + log(Population)
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Model Results

Diabetes Prevalence Ratio
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What if we missed a confounder?
Hypothetical f,

 |n the worst case, we need a

confounder-outcome effect of
9.5% to tip the prevalence ratio
to the null.

 |n the best case, we need a

confounder-outcome effect of
54.9% to tip the prevalence
ratio.
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Wrap Up &=




Guiding Questions

* Can we use a function of distance to healthy food retailers to
quantify food access in the Piedmont Triad, even if this
function is subject to misclassification?

 Can we estimate the relationship between food access and

diabetes prevalence in the presence of misclassifications
and missingness?
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Guiding Questions

Can we use a function of distance to healthy food retailers to
quantify food access in the Piedmont Triad, even if this
function is subject to misclassification?

Can we estimate the relationship between food access and
diabetes prevalence in the presence of misclassifications
and missingness?
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Strengths and Limitations

vUses all availlable data

wOnly two parametric

. & Finicky numerical behavior,
assumptions

especially in the standard

vsLower bias than naive error estimators

analysis @ Poisson assumptions in the

wRecovers efficiency lost by case stuay
the complete case analysis
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Recommendations

 Use the gold standard in a setting where there is no missingness or
misclassification.

 Use the MLE if you have high error rates and missingness, as it avoids the
bias of the naive analysis and recovers more efficiency than the complete
case analysis.

* |f you have very little missingness, you can get away with the complete
case analysis.
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Future Directions

* Incorporate a spatial model to explore relationships among
adjacent tracts

* Vary the outcome model of interest
e Extend past the binary exposure case

* Improve the query design
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